Quantum fault tolerance and error correction

ASPLOS Workshop April 28, 2024

Quantum computers

- A million billion dollar challenge—how to build a quantum computer?
- Different architectures:

- Reliable processing of quantum information is extremely difficult!
- Indispensable concepts [Shor95,Steane96]:
 (i) quantum error correction, (ii) fault-tolerant methods.

A path to fault-tolerant quantum computers

- Quantum algorithms require:
 - error rates ~ $10^{-10} 10^{-15}$,
 - fast logical clock speed.
- The space & time overheads of QEC are a major roadblock!

Quantum error correction

- Quantum code = a subspace of the Hilbert space. Errors take the encoded state $|\psi\rangle$ outside \mathscr{C} .
- Detecting & correcting errors:

- The decoding problem is computationally hard [lyer,Poulin15].
- Processing of classical information needs to:
 - be fast to avoid the backlog problem [Terhal15],
 - handle many errors & have good performance.

Fault-tolerant computation

We want to run quantum algorithms!

- Implementation of any unitary U w/ a universal set of gates, e.g., $\{H, T, CX\}$.
- Fault-tolerant computation on encoded information:
 - logical operations interleaved w/ QEC.
- Transversal gates & const.-depth circuits:
 - easy to implement & fault-tolerant,
 - limitations, e.g., the Eastin-Knill theorem.

Exciting times—the dawn of QEC & fault tolerance.

Bluvstein et al., Nature (2024)

- Reducing the overhead of QEC:
 - qubit overhead, e.g., better QEC codes,
 - time overhead, e.g., single-shot QEC.
- Many questions still remain open.
- Integration in the quantum computing stack.

Challenges & opportunities

- Reducing the qubit overhead:
 - limitations on codes w/ geometrically-local checks,
 - quantum low-density parity-check (LDPC) codes,

— ...

. . .

- Reducing the time overhead:
 - single-shot QEC,
 - transversal gates,

Kubica, Vasmer, Nat. Comm. (2022)

- Solving the decoding problem:
 - self-correcting quantum memories,
 - practical decoding algorithms,

Gu et al., Comm. Math. Phys. (2024)

Challenges & opportunities, cont.

- Implementation on quantum hardware:
 - exploiting noise bias, e.g., erasure qubits,
 - solving different optimization problems,

Implementation of logical operations:

. . .

. . .

. . .

- alternatives to magic state distillation,
- constructing novel QEC codes,

- Integration in the quantum computing stack:
 - fault-tolerant compilation of algorithms,
 - solving the routing problem,

